Forecasting Gulf of Mexico Hypoxia under Scenarios of Watershed and River Management

Dubravko Justic and Lixia Wang

Department of Oceanography and Coastal Sciences College of the Coast and Environment Louisiana State University

NCER 2018 August 26 – 30, 2018, New Orleans, LA

Extent of Gulf Hypoxia 1985 - 2018

Simulated Gulf Hypoxic Area and Volume

Justic et al. (in preparation)

-50% N

-25% N

River Diversions

Caernarvon Diversion Source: USACE

Proposed Sediment Diversions (LCMP, 2017)

- Mid-Barataria (75,000 cfs; 2,124 m³ s⁻¹)
- Lower-Barataria (50,000 cfs; 1,416 m³ s⁻¹)
- Mid-Breton Sound (35,000 cfs; 991 m³ s⁻¹)
- Lower Breton Sound (50,000 cfs; 1,416 m³ s⁻¹) Total diversion discharge (210,000 cfs; 5,947 m³ s⁻¹)

River Diversions (LCMP, 2017)

Proposed Diversions (LCMP, 2017) **Diversions** Siphons

Research Questions

- How could estuarine and coastal hydrodynamics and salinity regimes change under the proposed large-scale river diversions?
- How could nutrient transport pathways and dynamics of hypoxia be affected?

FVCOM LATEX Model FVCOM

Individual

Wang and Justic (2009), Justic and Wang (2014), Rose et al. (2014)

FVCOM LATEX Model Computational Domain and Grid

Wang and Justic (2009), Justic and Wang (2014)

FVCOM Barataria Bay Model Computational Domain and Grid

Elements: 125,039 Resolution: 18 -1,600 m

Mississippi Delta

FVCOM LATEX Model

Partitioning of the Lower Mississippi River Discharge

Justic and Wang (in preparation)

Allison et al. (2012)

FVCOM LATEX Water Quality Model

Justic and Wang (2014)

Model Scenarios

- Hypothetical diversion scenarios 4 sediment diversions (210,000 cfs/5,947 m³ s⁻¹; LCMP, 2017)
- Sediment diversion operation schedule February 20 July 5
- MR at Belle Chase >16,990 m³ s⁻¹ (600,000 cfs; LCMP, 2012)

Model Forcing

- Mississippi River discharge USACE
- Mississippi River nutrient concentrations USGS
- Wind NOGAPS
- Heat flux COAMPS
- Boundary forcing IASNFS

Simulation Period

- January 1 December 31, 2002
- High flow year, increased frontal activity, large hypoxic zone $(22,000 \text{ km}^2)$

Wang and Justic (2009)

FVCOM LATEX Model

Simulated Surface Currents and Salinity (4/1 – 7/31/2002)

w/o Sediment Diversions

Four Operational Sediment Diversions

Justic and Wang (in preparation)

FVCOM - MODIS Comparison

Justic and Wang (in preparation)

FVCOM LATEX Model Simulated Particle Trajectories (5/19 – 7/31/2002)

FVCOM LATEX Model Simulated Hypoxic Area (July 21, 2002)

w/o Sediment Diversions

Four Operational Sediment Diversions

Justic and Wang (in preparation)

FVCOM LATEX Model Simulated Hypoxic Area (August 25, 2002)

w/o Sediment Diversions

Four Operational Sediment Diversions

-91

Justic and Wang (in preparation)

Conclusions

- Proposed large-scale sediment diversions could potentially strongly affect hypoxia dynamics in the NGOM.
- Large decreases (up to 25%) in midsummer hypoxic area in the western NGOM region.
- Small increases (up to 10%) in late summer hypoxic area in the eastern NGOM region.
- Decreased velocities in the channels of the MR Birdfoot Delta.
- Weakening of the anticyclonic gyre in the Louisiana Bight.

Acknowledgements

- NOAA CSCOR (NGOMEX)
- BP/GoMRI (Coastal Waters Consortium)
- LSU high performance computing
- Dong Ko (NRL)

